3.6.63 \(\int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [563]

3.6.63.1 Optimal result
3.6.63.2 Mathematica [A] (warning: unable to verify)
3.6.63.3 Rubi [A] (verified)
3.6.63.4 Maple [B] (verified)
3.6.63.5 Fricas [F]
3.6.63.6 Sympy [F]
3.6.63.7 Maxima [F]
3.6.63.8 Giac [F]
3.6.63.9 Mupad [F(-1)]

3.6.63.1 Optimal result

Integrand size = 23, antiderivative size = 325 \[ \int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 a \left (8 a^2-5 b^2\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^4 \sqrt {a+b} d}+\frac {2 (2 a+b) (4 a+b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^3 \sqrt {a+b} d}-\frac {2 a^2 \sec (c+d x) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (4 a^2-b^2\right ) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b^2 \left (a^2-b^2\right ) d} \]

output
2/3*a*(8*a^2-5*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2 
),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/( 
a-b))^(1/2)/b^4/d/(a+b)^(1/2)+2/3*(2*a+b)*(4*a+b)*cot(d*x+c)*EllipticF((a+ 
b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+ 
b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d/(a+b)^(1/2)-2*a^2*sec(d*x+ 
c)*tan(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+2/3*(4*a^2-b^2)*(a+b*se 
c(d*x+c))^(1/2)*tan(d*x+c)/b^2/(a^2-b^2)/d
 
3.6.63.2 Mathematica [A] (warning: unable to verify)

Time = 11.67 (sec) , antiderivative size = 470, normalized size of antiderivative = 1.45 \[ \int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 (b+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 a \left (8 a^3+8 a^2 b-5 a b^2-5 b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-2 b \left (8 a^3+2 a^2 b-5 a b^2+b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+a \left (8 a^2-5 b^2\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b^3 \left (-a^2+b^2\right ) d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} (a+b \sec (c+d x))^{3/2}}+\frac {(b+a \cos (c+d x))^2 \sec ^2(c+d x) \left (-\frac {2 a \left (-8 a^2+5 b^2\right ) \sin (c+d x)}{3 b^3 \left (-a^2+b^2\right )}-\frac {2 a^3 \sin (c+d x)}{b^2 \left (-a^2+b^2\right ) (b+a \cos (c+d x))}+\frac {2 \tan (c+d x)}{3 b^2}\right )}{d (a+b \sec (c+d x))^{3/2}} \]

input
Integrate[Sec[c + d*x]^4/(a + b*Sec[c + d*x])^(3/2),x]
 
output
(-2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)*Sqrt[Cos[(c + d*x)/2]^2*Sec[c 
+ d*x]]*(2*a*(8*a^3 + 8*a^2*b - 5*a*b^2 - 5*b^3)*Sqrt[Cos[c + d*x]/(1 + Co 
s[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*Ellip 
ticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b*(8*a^3 + 2*a^2*b - 5 
*a*b^2 + b^3)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d* 
x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - 
 b)/(a + b)] + a*(8*a^2 - 5*b^2)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c 
+ d*x)/2]^2*Tan[(c + d*x)/2]))/(3*b^3*(-a^2 + b^2)*d*Sqrt[Sec[(c + d*x)/2] 
^2]*(a + b*Sec[c + d*x])^(3/2)) + ((b + a*Cos[c + d*x])^2*Sec[c + d*x]^2*( 
(-2*a*(-8*a^2 + 5*b^2)*Sin[c + d*x])/(3*b^3*(-a^2 + b^2)) - (2*a^3*Sin[c + 
 d*x])/(b^2*(-a^2 + b^2)*(b + a*Cos[c + d*x])) + (2*Tan[c + d*x])/(3*b^2)) 
)/(d*(a + b*Sec[c + d*x])^(3/2))
 
3.6.63.3 Rubi [A] (verified)

Time = 1.25 (sec) , antiderivative size = 345, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 4332, 27, 3042, 4570, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^4}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4332

\(\displaystyle -\frac {2 \int \frac {\sec (c+d x) \left (2 a^2-b \sec (c+d x) a-\left (4 a^2-b^2\right ) \sec ^2(c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sec (c+d x) \left (2 a^2-b \sec (c+d x) a-\left (4 a^2-b^2\right ) \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (2 a^2-b \csc \left (c+d x+\frac {\pi }{2}\right ) a+\left (b^2-4 a^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4570

\(\displaystyle -\frac {\frac {2 \int \frac {\sec (c+d x) \left (b \left (2 a^2+b^2\right )+a \left (8 a^2-5 b^2\right ) \sec (c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {2 \left (4 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {\sec (c+d x) \left (b \left (2 a^2+b^2\right )+a \left (8 a^2-5 b^2\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {2 \left (4 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (b \left (2 a^2+b^2\right )+a \left (8 a^2-5 b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}-\frac {2 \left (4 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4493

\(\displaystyle -\frac {\frac {a \left (8 a^2-5 b^2\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-(a-b) (2 a+b) (4 a+b) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {2 \left (4 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {a \left (8 a^2-5 b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) (2 a+b) (4 a+b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}-\frac {2 \left (4 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4319

\(\displaystyle -\frac {\frac {a \left (8 a^2-5 b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} (2 a+b) (4 a+b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{3 b}-\frac {2 \left (4 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4492

\(\displaystyle -\frac {\frac {-\frac {2 a (a-b) \sqrt {a+b} \left (8 a^2-5 b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 (a-b) \sqrt {a+b} (2 a+b) (4 a+b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{3 b}-\frac {2 \left (4 a^2-b^2\right ) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{b \left (a^2-b^2\right )}-\frac {2 a^2 \tan (c+d x) \sec (c+d x)}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

input
Int[Sec[c + d*x]^4/(a + b*Sec[c + d*x])^(3/2),x]
 
output
(-2*a^2*Sec[c + d*x]*Tan[c + d*x])/(b*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x 
]]) - (((-2*a*(a - b)*Sqrt[a + b]*(8*a^2 - 5*b^2)*Cot[c + d*x]*EllipticE[A 
rcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - 
 Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) 
- (2*(a - b)*Sqrt[a + b]*(2*a + b)*(4*a + b)*Cot[c + d*x]*EllipticF[ArcSin 
[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[ 
c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))/(3*b) 
- (2*(4*a^2 - b^2)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*b*d))/(b*(a^2 
 - b^2))
 

3.6.63.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4332
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-a^2)*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^( 
m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Simp[d^3/ 
(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x]) 
^(n - 3)*Simp[a^2*(n - 3) + a*b*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*( 
m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 
- b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n 
, 2]))
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4570
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e 
_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_S 
ymbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2) 
)), x] + Simp[1/(b*(m + 2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[ 
b*A*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; 
 FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]
 
3.6.63.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2285\) vs. \(2(297)=594\).

Time = 12.33 (sec) , antiderivative size = 2286, normalized size of antiderivative = 7.03

method result size
default \(\text {Expression too large to display}\) \(2286\)

input
int(sec(d*x+c)^4/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-2/3/d/(a-b)/(a+b)/b^3*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c) 
+1)*(4*a^3*b*sin(d*x+c)-4*a*b^3*sin(d*x+c)+b^4*sin(d*x+c)-a^2*b^2*sin(d*x+ 
c)+8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)- 
csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^3*b-5* 
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d 
*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b^2-5*(1/ 
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+ 
c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^3-EllipticF( 
cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos( 
d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4*cos(d*x+c)^2+8*(1/( 
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^4*cos(d*x+c)^2- 
2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d 
*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^4*cos(d*x 
+c)+16*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d* 
x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^4*co 
s(d*x+c)-8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d 
*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^ 
3*b-2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c) 
-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*...
 
3.6.63.5 Fricas [F]

\[ \int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{4}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^4/(b^2*sec(d*x + c)^2 + 2*a 
*b*sec(d*x + c) + a^2), x)
 
3.6.63.6 Sympy [F]

\[ \int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\sec ^{4}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(sec(d*x+c)**4/(a+b*sec(d*x+c))**(3/2),x)
 
output
Integral(sec(c + d*x)**4/(a + b*sec(c + d*x))**(3/2), x)
 
3.6.63.7 Maxima [F]

\[ \int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{4}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)^4/(b*sec(d*x + c) + a)^(3/2), x)
 
3.6.63.8 Giac [F]

\[ \int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{4}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^4/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^4/(b*sec(d*x + c) + a)^(3/2), x)
 
3.6.63.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^4(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^4\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int(1/(cos(c + d*x)^4*(a + b/cos(c + d*x))^(3/2)),x)
 
output
int(1/(cos(c + d*x)^4*(a + b/cos(c + d*x))^(3/2)), x)